〔此问者,令上二人与下三人等,上、下部差一人,其差三。均加上部,则 得二三;均加下部,则得三三。下部犹差一人,差得三,以通于本率,即上、下 部等也。于今有术,副并为所有率,未并者各为所求率,五钱为所有数,而今有 之,即得等耳。假令七人分七钱,欲令上二人与下五人等,则上、下部差三人。
并上部为十三,下部为十五。下多上少,下不足减上。当以上、下部列差而后均 减,乃合所问耳。此可仿下术:令上二人分二钱半为上率,令下三人分二钱半为 下率。上、下二率以少减多,余为实。置二人、三人,各半之,减五人,余为法。
实如法得一钱,即衰相去也。下衰率六分之五者,丁所得钱数也。〕 今有竹九节,下三节容四升,上四节容三升。问中间二节欲均容,各多少? 答曰:下初一升六十六分升之二十九。次一升六十六分升之二十二。次一升六十 六分升之一十五。次一升六十六分升之八。次一升六十六分升之一。次六十六分 升之六十。次六十六分升之五十三。次六十六分升之四十六。次六十六分升之三 十九。
术曰:以下三节分四升为下率,以上四节分三升为上率。
〔此二率者,各其平率也。〕 上、下率以少减多,余为实。
〔按:此上、下节各分所容为率者,各其平率。上、下以少减多者,余为中 间五节半之凡差,故以为实也。〕 置四节、三节,各半之,以减九节,余为法。实如法得一升。即衰相去也。
〔按此术法者,上下节所容已定之节,中间相去节数也;实者,中间五节半 之凡差也。故实如法而一,则每节之差也。〕 下率一升少半升者,下第二节容也。
〔一升少半升者,下三节通分四升之平率。平率即为中分节之容也。〕 今有凫起南海,七日至北海;雁起北海,九日至南海。今凫、雁俱起,问何 日相逢?答曰:三日十六分日之十五。
术曰:并日数为法,日数相乘为实,实如法得一日。
〔按:此术置凫七日一至,雁九日一至。齐其至,同其日,定六十三日凫九 至,雁七至。今凫、雁俱起而问相逢者,是为共至。并齐以除同,即得相逢日。
故“并日数为法”者,并齐之意;“日数相乘为实”者,犹以同为实也。一曰: 凫飞日行七分至之一,雁飞日行九分至之一。齐而同之,凫飞定日行六十三分至 之九,雁飞定日行六十三分至之七。是为南北海相去六十三分,凫日行九分,雁 日行七分也。并凫、雁一日所行,以除南北相去,而得相逢日也。〕 今有甲发长安,五日至齐;乙发齐,七日至长安。今乙发已先二日,甲乃发 长安,问几何日相逢?答曰:二日十二分日之一。
术曰:并五日、七日,以为法。
〔按:此术“并五日、七日为法”者,犹并齐为法。置甲五日一至,乙七日 一至。齐而同之,定三十五日甲七至,乙五至。并之为十二至者,用三十五日也。
谓甲、乙与发之率耳。然则日化为至,当除日,故以为法也。〕 以乙先发二日减七日, 〔“减七日”者,言甲、乙俱发,今以发为始发之端,于本道里则余分也。〕 也。
余,以乘甲日数为实。
〔七者,长安去齐之率也;五者,后发相去之率也。今问后发,故舍七用五。
以乘甲五日,为二十五日。言甲七至,乙五至,更相去,用此二十五日也。
实如法得一日。