九章算术

卷七

更新时间:2021-03-04 05:30:46

  ○盈不足(以御隐杂互见) 今有共买物,人出八,盈三;人出七,不足四。问人数、物价各几何?答曰: 七人。物价五十三。

  今有共买鸡,人出九,盈一十一;人出六,不足十六。问人数、鸡价各几何? 答曰:九人。鸡价七十。

  今有共买琎,人出半,盈四;人出少半,不足三。问人数、琎价各几何?答 曰:四十二人。琎价十七。

  〔注云“若两设有分者,齐其子,同其母”,此问两设俱见零分,故齐其子, 同其母。又云“令下维乘上。讫,以同约之”,不可约,故以乘,同之。〕 今有共买牛,七家共出一百九十,不足三百三十;九家共出二百七十,盈三 十。问家数、牛价各几何?答曰:一百二十六家。牛价三千七百五十。

  〔按:此术并盈不足者,为众家之差,故以为实。置所出率,各以家数除之, 各得一家所出率。以少减多者,得一家之差。以除,即家数。以出率乘之,减盈, 故得牛价也。〕 术曰:置所出率,盈不足各居其下。令维乘所出率,并,以为实。并盈、不 足,为法。实如法而一。

  〔按:盈者,谓朓;不足者,谓之朒;所出率谓之假令。盈、朒维乘两 设者,欲为同齐之意。据“共买物,人出八,盈三;人出七,不足四”,齐其假 令,同其盈、朒,盈、朒俱十二。通计齐则不盈不朒之正数,故可并之为 实,并盈、不足为法。齐之三十二者,是四假令,有盈十二;齐之二十一者,是 三假令,亦朒十二;并七假令合为一实,故并三、四为法。〕 有分者通之。

  〔若两设有分者,齐其子,同其母。令下维乘上,讫,以同约之。〕 盈不足相与同其买物者,置所出率,以少减多,余,以约法、实。实为物价, 法为人数。

  〔“所出率以少减多”者,余,谓之设差,以为少设。则并盈、朒,是为 定实。故以少设约定实,则法,为人数;适足之实故为物价。盈朒当与少设相 通。不可遍约,亦当分母乘,设差为约法、实。〕 其一术曰:并盈、不足为实。以所出率,以少减多,余为法。实如法得一人。

  以所出率乘之,减盈、增不足,即物价。

  〔此术意谓盈不足为众人之差。以所出率以少减多,余为一人之差。以一人 之差约众人之差,故得人数也。〕 今有共买金,人出四百,盈三千四百;人出三百,盈一百。问人数、金价各 几何?答曰:三十三人。金价九千八百。

  今有共买羊,人出五,不足四十五;人出七,不足三。问人数、羊价各几何? 答曰:二十一人。羊价一百五十。

  术曰:置所出率,盈、不足各居其下。令维乘所出率,以少减多,余为实。

  两盈、两不足以少减多,余为法。实如法而一。有分者,通之。两盈两不足相与 同其买物者,置所出率,以少减多,余,以约法、实。实为物价,法为人数。

  〔按:此术两不足者,两设皆不足于正数。其所以变化,犹两盈。而或有势 同而情违者。当其为实,俱令不足维乘相减,则遗其所不足焉。故其余所以为实 者,无朒数以损焉。盖出而有余,两盈。两设皆逾于正数。假令与共买物,人 出八,盈三;人出九,盈十。齐其假令,同其两盈。两盈俱三十。举齐则兼去。

  其余所以为实者,无盈数。两盈以少减多,余为法。齐之八十者,是十假令;而 凡盈三十者,是十,以三之;齐之二十七者,是三假令;而凡盈三十者,是三, 以十之。今假令两盈共十、三,以三减十,余七,为一实。故令以三减十,余七 为法。所出率以少减多,余谓之设差。因设差为少设,则两盈之差是为定实。故 以少设约法得人数,约实即得金数。〕 其一术曰:置所出率,以少减多,余为法。两盈、两不足以少减多,余为实。

  实如法而一,得人数。以所出率乘之,减盈、增不足,即物价。

  〔“置所出率,以少减多”,得一人之差。两盈、两不足相减,为众人之差。

  故以一人之差除之,得人数。以所出率乘之,减盈、增不足,即物价。〕 今有共买犬,人出五,不足九十;人出五十,适足。问人数、犬价各几何? 答曰:二人。犬价一百。

下一页

上一篇:卷六

下一篇:卷八