九章算术

卷五

更新时间:2021-03-04 05:30:35

  淳风等按:依密率,为积三百三十四尺十一分尺之一。〕 为菽一百四十四斛二百四十三分斛之八。

  〔依徽术,当菽一百三十七斛一万二千七百一十七分斛之七千七百七十一。

  淳风等按:依密率,为菽一百三十七斛八百九十一分斛之四百三十三。〕 今有委米依垣内角,下周八尺,高五尺。问积及为米各几何?答曰:积三十 五尺九分尺之五。

  〔于徽术,当积三十三尺四百七十一分尺之四百五十七。

  淳风等按:依密率,当积三十三尺三十三分尺之三十一。〕 为米二十一斛七百二十九分斛之六百九十一。

  〔于徽术,当米二十斛三万八千一百五十一分斛之三万六千九百八十。

  淳风等按:依密率,为米二十斛二千六百七十三分斛之二千五百四十。〕 委粟术曰:下周自乘,以高乘之,三十六而一。

  〔此犹圆锥也。于徽术,亦当下周自乘,以高乘之,又以二十五乘之,九百 四十二而一也。〕 其依垣者, 〔居圆锥之半也。〕 十八而一。

  〔于徽术,当令此下周自乘,以高乘之,又以二十五乘之,四百七十一而一。

  依垣之周,半于全周。其自乘之幂居全周自乘之幂四分之一,故半全周之法以为 法也。〕 其依垣内角者, 〔角,隅也,居圆锥四分之一也。〕 九而一。

  〔于徽术,当令此下周自乘,而倍之,以高乘之,又以二十五乘之,四百七 十一而一。依隅之周,半于依垣。其自乘之幂居依垣自乘之幂四分之一,当半依 垣之法以为法。法不可半,故倍其实。又此术亦用周三径一之率。假令以三除周, 得径;若不尽,通分内子,即为径之积分。令自乘,以高乘之,为三方锥之积分。

  母自相乘得九,为法,又当三而一,得方锥之积。从方锥中求圆锥之积,亦犹方 幂求圆幂。乃当三乘之,四而一,得圆锥之积。前求方锥积,乃以三而一;今求 圆锥之积,复合三乘之。二母既同,故相准折。惟以四乘分母九,得三十六而连 除,圆锥之积。其圆锥之积与平地聚粟同,故三十六而一。

  淳风等按:依密率,以七乘之,其平地者,二百六十四而一;依垣者,一百 三十二而一;依隅者,六十六而一也。〕 程粟一斛积二尺七寸; 〔二尺七寸者,谓方一尺,深二尺七寸,凡积二千七百寸。〕 其米一斛积一尺六寸五分寸之一; 〔谓积一千六百二十寸。〕 其菽、荅、麻、麦一斛皆二尺四寸十分寸之三。

  〔谓积二千四百三十寸。此为以精粗为率,而不等其概也。粟率五,米率三, 故米一斛于粟一斛,五分之三;菽、荅、麻、麦亦如本率云。故谓此三量器为概, 而皆不合于今斛。当今大司农斛,圆径一尺三寸五分五厘,正深一尺,于徽术, 为积一千四百四十一寸,排成余分,又有十分寸之三。王莽铜斛于今尺为深九寸 五分五厘,径一尺三寸六分八厘七毫。以徽术计之,于今斛为容九斗七升四合有 奇。《周官·考工记》:朅氏为量,深一尺,内方一尺而圆外,其实一釜。于徽 术,此圆积一千五百七十寸。《左氏传》曰:“齐旧四量:豆、区、釜、钟。四 升曰豆,各自其四,以登于釜。釜十则钟。”钟六斛四斗。釜六斗四升,方一尺, 深一尺,其积一千寸。若此方积容六斗四升,则通外圆积成旁,容十斗四合一龠 五分龠之三也。以数相乘之,则斛之制:方一尺而圆其外,庣旁一厘七毫,幂一 百五十六寸四分寸之一,深一尺,积一千五百六十二寸半,容十斗。王莽铜斛与 《汉书·律历志》所论斛同。〕 今有仓,广三丈,袤四丈五尺,容粟一万斛。问高几何?答曰:二丈。

  术曰:置粟一万斛积尺为实。广、袤相乘为法。实如法而一,得高尺。

  〔以广袤之幂除积,故得高。按:此术本以广袤相乘,以高乘之,得此积。

  今还元,置此广袤相乘为法,除之,故得高也。〕 今有圆囷, 〔圆囷,廪也,亦云圆囤也。〕 高一丈三尺三寸少半寸,容米二千斛。问周几何?答曰:五丈四尺。

  〔于徽术,当周五丈五尺二寸二十分寸之九。

上一页 下一页

上一篇:卷四

下一篇:卷六