九章算术

卷五

更新时间:2021-03-04 05:30:35

  淳风等按:依密率,以七乘之,二百六十四而一。〕 今有堑堵,下广二丈,袤一十八丈六尺,高二丈五尺。问积几何?答曰:四 万六千五百尺。

  术曰:广袤相乘,以高乘之,二而一。

  〔邪解立方,得两堑堵。虽复橢方,亦为堑堵。故二而一。此则合所规棋。

  推其物体,盖为堑上叠也。其形如城,而无上广,与所规棋形异而同实。未闻所 以名之为堑堵之说也。〕 今有陽马,广五尺,袤七尺,高八尺。问积几何?答曰:九十三尺少半尺。

  术曰:广袤相乘,以高乘之,三而一。

  〔按:此术陽马之形,方锥一隅也。今谓四柱屋隅为陽马。假令广袤各一尺, 高一尺,相乘,得立方积一尺。邪解立方,得两堑堵;邪解堑堵,其一为陽马, 一为鳖臑。陽马居二,鳖臑居一,不易之率也。合两鳖臑成一陽马,合三陽马而 成一立方,故三而一。验之以棋,其形露矣。悉割陽马,凡为六鳖臑。观其割分, 则体势互通,盖易了也。其棋或修短、或广狭、立方不等者,亦割分以为六鳖臑。

  其形不悉相似。然见数同,积实均也。鳖臑殊形,陽马异体。然陽马异体,则不 纯合。不纯合,则难为之矣。何则?按:邪解方棋以为堑堵者,必当以半为分; 邪解堑堵以为陽马者,亦必当以半为分,一从一横耳。设以陽马为分内,鳖臑为 分外。棋虽或随修短广狭,犹有此分常率知,殊形异体,亦同也者,以此而已。

  其使鳖臑广、袤、高各二尺,用堑堵、鳖臑之棋各二,皆用赤棋。又使陽马之广、 袤、高各二尺,用立方之棋一,堑堵、陽马之棋各二,皆用黑棋。棋之赤、黑, 接为堑堵,广、袤、高各二尺。于是中攽其广、袤,又中分其高。令赤、黑堑堵 各自适当一方,高一尺,方一尺,每二分鳖臑,则一陽马也。其余两端各积本体, 合成一方焉。是为别种而方者率居三,通其体而方者率居一。虽方随棋改,而固 有常然之势也。按:余数具而可知者有一、二分之别,则一、二之为率定矣。其 于理也岂虚矣。若为数而穷之,置余广、袤、高之数,各半之,则四分之三又可 知也。半之弥少,其余弥细,至细曰微,微则无形。由是言之,安取余哉?数而 求穷之者,谓以情推,不用筹算。鳖臑之物,不同器用;陽马之形,或随修短广 狭。然不有鳖臑,无以审陽马之数,不有陽马,无以知锥亭之数,功实之主也。〕 今有鳖臑,下广五尺,无袤;上袤四尺,无广;高七尺。问积几何?答曰: 二十三尺少半尺。

  术曰:广袤相乘,以高乘之,六而一。

  〔按:此术臑者,臂节也。或曰:半陽马,其形有似鳖肘,故以名云。中破 陽马,得两鳖臑。鳖臑之见数即陽马之半数。数同而实据半,故云六而一,即得。〕 今有羡除,下广六尺,上广一丈,深三尺;末广八尺,无深;袤七尺。问积 几何?答曰:八十四尺。

  术曰:并三广,以深乘之,又以袤乘之,六而一。

  〔按:此术羡除,实隧道也。其所穿地,上平下邪,似两鳖臑夹一堑堵,即 羡除之形。假令用此棋:上广三尺,深一尺,下广一尺;末广一尺,无深;袤一 尺。下广、末广皆堑堵之广。上广者,两鳖臑与一堑堵相连之广也。以深、袤乘, 得积五尺。鳖臑居二,堑堵居三,其于本棋皆一为六,故六而一。合四陽马以为 方锥。邪画方锥之底,亦令为中方。就中方削而上合,全为中方锥之半。于是陽 马之棋悉中解矣。中锥离而为四鳖臑焉。故外锥之半亦为四鳖臑。虽背正异形, 与常所谓鳖臑参不相似,实则同也。所云夹堑堵者,中锥之鳖臑也。凡堑堵上袤 短者,连陽马也。下袤短者,与鳖臑连也。上、下两袤相等知,亦与鳖臑连也。

  并三广,以高、袤乘,六而一,皆其积也。今此羡除之广即堑堵之袤也。按: 此本是三广不等,即与鳖臑连者。别而言之:中央堑堵广六尺,高三尺,袤七尺。

  末广之两旁,各一小鳖臑,皆与堑堵等。令小鳖臑居里,大鳖臑居表,则大鳖臑 皆出橢方锥:下广二尺,袤六尺,高七尺。分取其半,则为袤三尺。以高、广乘 之,三而一,即半锥之积也。邪解半锥得此两大鳖臑。求其积,亦当六而一,合 于常率矣。按:陽马之棋两邪,棋底方。当其方也,不问旁角而割之,相半可知 也。推此上连无成不方,故方锥与陽马同实。角而割之者,相半之势。此大小鳖 臑可知更相表里,但体有背正也。〕 今有刍甍,下广三丈,袤四丈;上袤二丈,无广;高一丈。问积几何?答曰: 五千尺。

  术曰:倍下袤,上袤从之,以广乘之,又以高乘之,六而一。

  〔推明义理者:旧说云:“凡积刍有上下广曰童,甍,谓其屋盖之苫也。” 是故甍之下广、袤与童之上广、袤等。正解方亭两边,合之即刍甍之形也。假令 下广二尺,袤三尺;上袤一尺,无广;高一尺。其用棋也,中央堑堵二,两端陽 马各二。倍下袤,上袤从之,为七尺。以下广乘之,得幂十四尺。陽马之幂各居 二,堑堵之幂各居三。以高乘之,得积十四尺。其于本棋也,皆一而为六。故六 而一,即得。亦可令上下袤差乘广,以高乘之,三而一,即四陽马也;下广乘上 袤而半之,高乘之,即二堑堵;并之,以为甍积也。〕 刍童、曲池、盘池、冥谷皆同术。

  术曰:倍上袤,下袤从之;亦倍下袤,上袤从之;各以其广乘之,并,以高 若深乘之,皆六而一。

  〔按:此术假令刍童上广一尺,袤二尺;下广三尺,袤四尺;高一尺。其用 棋也,中央立方二,四面堑堵六,四角陽马四。倍下袤为八,上袤从之,为十, 以高、广乘之,得积三十尺。是为得中央立方各三,两端堑堵各四,两旁堑堵各 六,四角陽马亦各六。复倍上袤,下袤从之,为八,以高、广乘之,得积八尺。

上一页 下一页

上一篇:卷四

下一篇:卷六