九章算术

卷四

更新时间:2021-03-04 05:30:29

  置四分自乘得十六,三分自乘得九,故丸居立方十六分之九也。故以十六乘积, 九而一,得立方之积。丸径与立方等,故开立方而除,得径也。然此意非也。何 以验之?取立方棋八枚,皆令立方一寸,积之为立方二寸。规之为圆囷,径二寸, 高二寸。又复横因之,则其形有似牟合方盖矣。八棋皆似陽马,圆然也。按:合 盖者,方率也,丸居其中,即圆率也。推此言之,谓夫圆囷为方率,岂不阙哉? 以周三径一为圆率,则圆幂伤少;令圆囷为方率,则丸积伤多,互相通补,是以 九与十六之率偶与实相近,而丸犹伤多耳。观立方之内,合盖之外,虽衰杀有渐, 而多少不掩。判合总结,方圆相缠,浓纤诡互,不可等正。欲陋形措意,惧失正 理。敢不阙疑,以俟能言者。

  黄金方寸,重十六两;金丸径寸,重九两,率生于此,未曾验也。《周官· 考工记》:“朅氏为量,改煎金锡则不耗,不耗然后权之,权之然后准之,准之 然后量之。”言炼金使极精,而后分之则可以为率也。令丸径自乘,三而一,开 方除之,即丸中之立方也。假令丸中立方五尺,五尺为句,句自乘幂二十五尺。

  倍之得五十尺,以为弦幂,谓平面方五尺之弦也。以此弦为股,亦以五尺为句, 并句股幂得七十五尺,是为大弦幂。开方除之,则大弦可知也。大弦则中立方之 长邪,邪即丸径。故中立方自乘之幂于丸径自乘之幂,三分之一也。今大弦还乘 其幂,即丸外立方之积也。大弦幂开之不尽,令其幂七十五再自乘之,为面,命 得外立方积,四十二万一千八百七十五尺之面。又令中立方五尺自乘,又以方乘 之,得积一百二十五尺,一百二十五尺自乘,为面,命得积,一万五千六百二十 五尺之面。皆以六百二十五约之,外立方积,六百七十五尺之面,中立方积,二 十五尺之面也。

  张衡算又谓立方为质,立圆为浑。衡言质之与中外之浑:六百七十五尺之面, 开方除之,不足一,谓外浑积二十六也;内浑,二十五之面,谓积五尺也。今徽 令质言中浑,浑又言质,则二质相与之率犹衡二浑相与之率也。衡盖亦先二质之 率推以言浑之率也。衡又言:“质,六十四之面;浑,二十五之面。”质复言浑, 谓居质八分之五也。又云:方,八之面;圆,五之面。”圆浑相推,知其复以圆 囷为方率,浑为圆率也,失之远矣。衡说之自然欲协其陰陽奇偶之说而不顾疏密 矣。虽有文辞,斯乱道破义,病也。置外质积二十六,以九乘之,十六而一,得 积十四尺八分尺之五,即质中之浑也。以分母乘全内子,得一百一十七。又置内 质积五,以分母乘之,得四十,是谓质居浑一百一十七分之四十,而浑率犹为伤 多也。假令方二尺,方四面,并得八尺也,谓之方周。其中令圆径与方等,亦二 尺也。圆半径以乘圆周之半,即圆幂也。半方以乘方周之半,即方幂也。然则方 周知,方幂之率也;圆周知,圆幂之率也。按:如衡术,方周率八之面,圆周率 五之面也。令方周六十四尺之面,圆周四十尺之面也。又令径二尺自乘,得径四 尺之面,是为圆周率十之面,而径率一之面也。衡亦以周三径一之率为非,是故 更著此法,然增周太多,过其实矣。

  淳风等按:祖暅之谓刘徽、张衡二人皆以圆囷为方率,丸为圆率,乃设新 法。祖暅之开立圆术曰:“以二乘积,开立方除之,即立圆径。其意何也?取 立方棋一枚,令立枢于左后之下隅,从规去其右上之廉;又合而衡规之,去其前 上之廉。于是立方之棋分而为四,规内棋一,谓之内棋;规外棋三,谓之外棋。

  规更合四棋,复横断之。以句股言之,令余高为句,内棋断上方为股,本方之数, 其弦也。句股之法:以句幂减弦幂,则余为股幂。若令余高自乘,减本方之幂, 余即内棋断上方之幂也。本方之幂即此四棋之断上幂。然则余高自乘,即外三棋 之断上幂矣。不问高卑,势皆然也。然固有所归同而途殊者尔。而乃控远以演类, 借况以析微。按:陽马方高数参等者,倒而立之,横截去上,则高自乘与断上幂 数亦等焉。夫叠棋成立积,缘幂势既同,则积不容异。由此观之,规之外三棋旁 蹙为一,即一陽马也。三分立方,则陽马居一,内棋居二可知矣。合八小方成一 大方,合八内棋成一合盖。内棋居小方三分之二,则合盖居立方亦三分之二,较 然验矣。置三分之二,以圆幂率三乘之,如方幂率四而一,约而定之,以为丸率。

  故曰丸居立方二分之一也。”等数既密,心亦昭晢。张衡放旧,贻哂于后,刘徽 循故,未暇校新。夫岂难哉,抑未之思也。依密率,此立圆积,本以圆径再自乘, 十一乘之,二十一而一,得此积。今欲求其本积,故以二十一乘之,十一而一。

  凡物再自乘,开立方除之,复其本数。故立方除之,即丸径也。〕

上一页

上一篇:卷三

下一篇:卷五