〔言千之面十,言百万之面百。〕 议所得,以再乘所借一算为法,而除之。
〔再乘者,亦求为方幂。以上议命而除之,则立方等也。〕 除已,三之为定法。
〔为当复除,故豫张三面,以定方幂为定法也。〕 复除,折而下。
〔复除者,三面方幂以皆自乘之数,须得折、议,定其厚薄尔。开平幂者, 方百之面十;开立幂者,方千之面十。据定法已有成方之幂,故复除当以千为百, 折下一等也。〕 以三乘所得数,置中行。
〔设三廉之定长。〕 复借一算,置下行。
〔欲以为隅方。立方等未有定数,且置一算定其位。〕 步之,中超一,下超二等。
〔上方法,长自乘而一折,中廉法,但有长,故降一等;下隅法,无面长, 故又降一等也。〕 复置议,以一乘中, 〔为三廉备幂也。〕 再乘下, 〔令隅自乘,为方幂也。〕 皆副以加定法。以定法除。
〔三面、三廉、一隅皆已有幂,以上议命之而除,去三幂之厚也。〕 除已,倍下,并中,从定法。
〔凡再以中、三以下,加定法者,三廉各当以两面之幂连于两方之面,一隅 连于三廉之端,以待复除也。言不尽意,解此要当以棋,乃得明耳。〕 复除,折下如前。开之不尽者,亦为不可开。
〔术亦有以定法命分者,不如故幂开方,以微数为分也。〕 若积有分者,通分内子为定实。定实乃开之。讫,开其母以报除。
〔淳风等按:分母可开者,并通之积先合三母。既开之后一母尚存,故开分 母,求一母,为法,以报除也。〕 若母不可开者,又以母再乘定实,乃开之。讫,令如母而一。
〔淳风等按:分母不可开者,本一母也。又以母再乘之,令合三母。既开之 后,一母犹存,故令一母而一,得全面也。
按:“开立方”知,立方适等,求其一面之数。“借一算,步之,超二等” 者,但立方求积,方再自乘,就积开之,故超二等,言千之面十,言百万之面百。
“议所得,以再乘所借算为法,而以除”知,求为方幂,以议命之而除,则立方 等也。“除已,三之为定法”,为积未尽,当复更除,故豫张三面已定方幂为定 法。“复除,折而下”知,三面方幂皆已有自乘之数,须得折、议定其厚薄。据 开平方,百之面十,其开立方,即千之面十。而定法已有成方之幂,故复除之者, 当以千为百,折下一等。“以三乘所得数,置中行”者,设三廉之定长。“复借 一算,置下行”者,欲以为隅方,立方等未有数,且置一算定其位也。“步之, 中超一,下超二”者,上方法长自乘而一折,中廉法但有长,故降一等,下隅法 无面长,故又降一等。“复置议,以一乘中”者,为三廉备幂。“再乘下”,当 令隅自乘为方幂。“皆副以加定法,以定法除者,三面、三廉、一隅皆已有幂, 以上议命之而除,去三幂之厚。“除已,倍下、并中,从定法”者,三廉各当以 两面之幂连于两方之面,一隅连于三廉之端,以待复除。其开之不尽者,折下如 前,开方,即合所问。“有分者,通分内子开之。讫,开其母以报除”,“可开 者,并通之积,先合三母;既开之后,一母尚存,故开分母”者,“求一母为法, 以报除。”“若母不可开者,又以母再乘定实,乃开之。讫,令如母而一”,分 母不可开者,本一母,又以母再乘,令合三母,既开之后,亦一母尚存。故令如 母而一,得全面也。〕 今有积四千五百尺。
〔亦谓立方之尺也。〕 问为立圆径几何?答曰:二十尺。
〔依密率,立圆径二十尺,计积四千一百九十尺二十一分尺之一十。〕 又有积一万六千四百四十八亿六千六百四十三万七千五百尺。问为立圆径几 何?答曰:一万四千三百尺。
〔依密率,为径一万四千六百四十三尺四分尺之三。〕 开立圆术曰:置积尺数,以十六乘之,九而一,所得,开立方除之,即立 圆径。
〔立圆,即丸也。为术者,盖依周三径一之率。令圆幂居方幂四分之三,圆 囷居立方亦四分之三。更令圆囷为方率十二,为丸率九,丸居圆囷又四分之三也。