各置中积,加历应及所求后合分,满历率,去之;不尽,如度率而一为度,不满,退除为分秒,即其星平合入历度及分秒;以诸段限度累加之,即诸段入历。上考者,中积内减历应,满历率去之,不尽,反减历率,余加其年后合,余同上。
求盈缩差
置入历度及分秒,在历中已下,为盈;已上,减去历中,余为缩。视盈缩历,在九十一度三十一分四十三秒太已下,为初限;已上,用减历中,余为末限。
其火星,盈历在六十度八十七分六十二秒半已下,为初限;已上,用减历中,余为末限。
置各星立差,以初末限乘之,去加减平差,得,又以初末限乘之,去加减定差,再以初末限乘之,满亿为度,不满退除为分秒,即所求盈缩差。
又术:置盈缩历,以历策除之,为策数,不尽为策余;以其下损益率乘之,历策除之,所得,益加损减其下盈缩积,亦为所求盈缩差。
求平合诸段定积
各置其星其段中积,以其盈缩差盈加缩减之,即其段定积日及分秒;以天正冬至日分加之,满纪法去之,不满,命甲子算外,即得日辰。
求平合及诸段所在月日
各置其段定积,以天正闰日及分加之,满朔策,除之为月数,不尽,为入月已来日数及分秒。其月数,命天正十一月算外,即其段入月经朔日数及分秒;以日辰相距,为所在定朔月日。
求平合及诸段加时定星
各置其段中星,以盈缩差盈加缩减之,(金星倍之,水星三之。)即诸段定星;以天正冬至加时黄道日度加而命之,即其星其段加时所在宿度及分秒。
求诸段初日晨前夜半定星
各以其段初行率,乘其段加时分,百约之,乃顺减退加其日加时定星,即其段初日晨前夜半定星;加命如前,即得所求。
求诸段日率度率
各以其段日辰距后段日辰为日率,以其段夜半宿次与后段夜半宿次相减,余为度率。
求诸段平行分
各置其段度率,以其段日率除之,即其段平行度及分秒。