终实,六万二千三百五十六。
终全余,千八。
转法,五十二。
篾法,八百九十七。
闰限,六百七十六。
推入转术:终实去积日,不尽,以终法乘而又去,不如终实者,满终法得一日, 不满为余,即其年天正经朔夜半入转日及余。
求次日:加一日,每日满转终则去之,其二十八日者加全余为夜半入初日余。
求弦望:皆因朔加其经日,各得夜半所入日余。
求次月:加大月二日,小月一日,皆及全余,亦其夜半所入。
求经辰所入朔弦望:经余变从转,不成为秒,加其夜半所入,皆其辰入日及余。 因朔辰所入,每加日七、余八百六十五、秒千一百六十大,秒满日法成余,亦得上 弦。望、下弦、次朔经辰所入径求者,加望日十四、余千七百三十一、秒千七十九 半,下弦日二十二、余三百三十四、秒九百九十八小,次朔日一、余二千二百八、 秒九百一十七。亦朔望各增日一,减其全余,望五百三十一、秒百六十二半,朔五 十四、秒三百二十五。
求月平应会日所入:以月朔弦望会日所入迟速定数,亦变从转余,乃速加、迟 减其经辰所入余,即各平会所入日余。
推朔弦望定日术:
各以月平会所入之日加减限,限并后限而半之,为通率;又二限相减,为限衰。 前多者,以入余减终法,残乘限衰,终法而一,并于限衰而半之;前少者,半入余 乘限衰,亦终法而一,减限衰。皆加通率,入余乘之,日法而一,所得为平会加减 限数。其限数又别从转余为变余,朓减、朒加本入余。限前多者,朓以减与未减, 朒以加与未加,皆减终法,并而半之,以乘限衰;前少者,亦朓朒各并二入余,半 之,以乘限衰;皆终法而一,加于通率,变余乘之,日法而一。所得以朓减、朒加 限数,加减朓朒积而定朓朒。乃朓减、朒加其平会日所入余,满若不足进退之,即 朔弦望定日及余。不满晨前数者,借减日算,命甲子算外,各其日也。不减与减, 朔日立算与后月同。若俱无立算者,月大,其定朔算后加所借减算。闰衰限满闰限, 定朔无中气者为闰,满之前后,在分前若近春分后、秋分前,而或月有二中者,皆 量置其朔,不必依定。其后无同限者,亦因前多以通率数为半衰而减之,二前少, 即为通率。其加减变余进退日者,分为一日,随余初末如法求之,所得并以加减限 数。凡分余秒篾,事非因旧,文不著母者,皆十为法。若法当求数,用相加减,而 更不过通远,率少数微者,则不须算。其入七日余二千一十一,十四日余千七百五 十九,二十一日余千五百七,二十八日始终余以下为初数,各减终法以上为末数。 其初末数皆加减相返,其要各为九分,初则七日八分,十四日七分,二十一日六分, 二十八日五分;末则七日一分,十四日二分,二十一日三分,二十八日四分。虽初 稍弱而末微强,余差止一,理势兼举,皆今有转差,各随其数。若恆算所求,七日 与二十一日得初衰数,而末初加隐而不显,且数与平行正等。亦初末有数而恆算所 无,其十四日、二十八日既初末数存,而虚衰亦显,其数当去,恆法不见。
求朔弦望之辰所加:
定余半朔辰五十一大以下,为加子过;以上,加此数,乃朔辰而一,亦命以子, 十二算外,又加子初。以后其求入辰强弱,如气。
求入辰法度:
度法,四万六千六百四十四。
周数,千七百三万七千七十六。