今有出钱二千三百七十,买布九匹二丈七尺。欲匹率之,问匹几何?答曰: 一匹,二百四十四钱一百二十九分钱之一百二十四。
今有出钱一万三千六百七十,买丝一石二钧一十七斤。欲石率之,问石几何? 答曰:一石,八千三百二十六钱一百九十七分钱之百七十八。
术曰:以求所率乘钱数为实,以所买率为法,实如法得一。
〔淳风等按:今有之义,钱为所求率,物为所有数,故以乘钱,又以分母乘 之为实。实如法而一,有分者通之。所买通分内子为所有率,故以为法。得钱数 不尽而命分者,因法为母,实余为子。实见不满,故以命之。〕 今有出钱五百七十六,买竹七十八个。欲其大小率之,问各几何?答曰:其 四十八个,个七钱;其三十个,个八钱。
今有出钱一千一百二十,买丝一石二钧十八斤。欲其贵贱斤率之,问各几何? 答曰:其二钧八斤,斤五钱;其一石一十斤,斤六钱。
今有出钱一万三千九百七十,买丝一石二钧二十八斤三两五铢。欲其贵贱石 率之,问各几何?答曰:其一钧九两一十二铢,石八千五十一钱;其一石一钧二 十七斤九两一十七铢,石八千五十二钱。
今有出钱一万三千九百七十,买丝一石二钧二十八斤三两五铢。欲其贵贱钧 率之,问各几何?答曰:其七斤一十两九铢,钧二千一十二钱;其一石二钧二十 斤八两二十铢,钧二千一十三钱。
今有出钱一万三千九百七十,买丝一石二钧二十八斤三两五铢。欲其贵贱斤 率之,问各几何?答曰:其一石二钧七斤十两四铢,斤六十七钱;其二十斤九两 一铢,斤六十八钱。
今有出钱一万三千九百七十,买丝一石二钧二十八斤三两五铢。欲其贵贱两 率之,问各几何?答曰:其一石一钧一十七斤一十四两一铢,两四钱;其一钧一 十斤五两四铢,两五钱。
其率术曰:各置所买石、钧、斤、两以为法,以所率乘钱数为实,实如法 而一。不满法者,反以实减法。法贱实贵。其求石、钧、斤、两,以积铢各除法、 实,各得其积数,余各为铢。
〔其率知,欲令无分。按:出钱五百七十六,买竹七十八个,以除钱,得七, 实余三十,是为三十个复可增一钱。然则实余之数即是贵者之数,故曰实贵也。
本以七十八个为法,今以贵者减之,则其余悉是贱者之数。故曰法贱也。其求石、 钧、斤、两,以积铢各除法、实,各得其积数,余各为铢者,谓石、钧、斤、两 积铢除实,又以石、钧、斤、两积铢除法,余各为铢,即合所问。〕 今有出钱一万三千九百七十,买丝一石二钧二十八斤三两五铢。欲其贵贱铢 率之,问各几何?答曰:其一钧二十斤六两十一铢,五铢一钱;其一石一钧七斤 一十二两一十八铢,六铢一钱。
今有出钱六百二十,买羽二千一百翭。
〔翭,羽本也。数羽称其本,犹数草木称其根株。〕 欲其贵贱率之,问各几何?答曰:其一千一百四十翭,三翭一钱; 其九百六十翭,四翭钱。
今有出钱九百八十,买矢榦五千八百二十枚。欲其贵贱率之,问各几何?答 曰:其三百枚,五枚一钱;其五千五百二十枚,六枚一钱。
反其率术曰:以钱数为法,所率为实,实如法而一。不满法者,反以实减 法。法少实多。二物各以所得多少之数乘法、实,即物数。
〔按:其率:出钱六百二十,买羽二千一百翭。反之,当二百四十钱, 一钱翭;其三百八十钱,一钱三翭。是钱有二价,物有贵贱。故以羽乘 钱,反其率也。
淳风等按:其率者,钱多物少;反其率知,钱少物多;多少相反,故曰反其 率也。其率者,以物数为法,钱数为实。反之知,以钱数为法,物数为实。不满 法知,实余也。当以余物化为钱矣。法为凡钱,而今以化钱减之,故以实减法。