又尝撰格术补一卷,同郡陈澧序之,略曰:“格术补者,古算家有格术,久亡,而吾友邹徵君特夫补之也。格术之名,见梦溪笔谈,其说云:‘阳燧照物,迫之则正,渐远则无所见,过此则倒,中间有碍故也。如人摇舻,臬为之碍,本末相格,算家谓之格术。’又云:‘阳燧面洼,向日照之,则光聚向内,离镜一二寸,聚为一点,著物火发。’笔谈之说,皆格术之根源也。宋以前盖有推演为算书者,后世失传,遂无有知此术者。徵君得笔谈之说,观日光之景,推求数理,穷极微眇,知西人制镜之法皆出於此。乃为书一卷,以补古算家之术。盖古所谓阳燧者,铸金以为镜也,西洋铁镜,即阳燧,玻璃为镜,亦同此理。故推阳燧之理,可以贯而通之。有此书而古算家失传之法复明,可知西人制器之法,实古算家所有,此今世之奇书也。至若古算失传,如此者当复不少,吾又因此而感慨系之矣!”
同治三年,郭嵩焘特疏荐之,坚以疾辞。曾国藩督两江日,欲以上海机器局旁设书院,延伯奇以数学教授生徒,亦未就。八年五月,卒,年五十有一。
李善兰,字壬叔,海宁人。诸生。从陈奂受经,於算术好之独深。十岁即通九章,后得测圆海镜、句股割圜记,学益进。疑割圜法非自然,精思得其理。尝谓道有一贯,艺亦然。测圆海镜每题皆有法有草,法者,本题之法也;草者,用立天元一曲折以求本题之法,乃造法之法,法之源也。算术大至躔离交食,细至米盐琐碎,其法至繁,以立天元一演之,莫不能得其法。故立天元一者,算学中之一贯也。并时明算如钱塘戴煦,南汇张文虎,乌程徐有壬、汪曰桢,归安张福僖,皆相友善。咸丰初,客上海,识英吉利伟烈亚力、艾约瑟、韦廉臣三人,伟烈亚力精天算,通华言。善兰以欧几里几何原本十三卷、续二卷,明时译得六卷,因与伟烈亚力同译后九卷,西士精通几何者鲜,其第十卷尤玄奥,未易解,譌夺甚多,善兰笔受时,辄以意匡补。译成,伟烈亚力叹曰:“西士他日欲得善本,当求诸中国也!”
伟烈亚力又言美国天算名家罗密士尝取代数、微分、积分合为一书,分款设题,较若列眉,复与善兰同译之,名曰代微积拾级十八卷。代数变天元、四元,别为新法,微分、积分二术,又借径於代数,实中土未有之奇秘。善兰随体剖析自然,得力於海镜为多。
粤匪陷吴、越,依曾国藩军中。同治七年,用巡抚郭嵩焘荐,徵入同文馆,充算学总教习、总理衙门章京,授户部郎中、三品卿衔。课同文馆生以海镜,而以代数演之,合中、西为一法,成就甚众。光绪十年,卒於官,年垂七十。
善兰聪彊绝人,其於算,能执理之至简,驭数至繁,故衍之无不可通之数,抉之即无不可穷之理。所著则古昔斋算学,详艺文志。世谓梅文鼎悟借根之出天元,善兰能变四元而为代数,盖梅氏后一人云。
华衡芳,字若汀,金匮人。能文善算,著有行素轩算学行世。其笔谈一书,犹为生平精力所聚。凡十二卷,第一卷论加、减、乘、除之理;第二卷论通分之理;第三卷论十分数;第四卷论开方之理;第五卷论看题、驭题之法,以明加、减、乘、除、通分、开方之用;第六卷论天元及天元开方;第七卷论方程之术,已寓四元之意,末乃专论四元;第八卷论代数释号及等式;第九卷论代数中助变之数及虚代之法;第十卷论微分;第十一卷论积分,分十六款以明之;第十二卷一论各种算学不外乎加、减、乘、除,二论一切算稿宜笔之於书,三论算学中可以著书之事,四论学算与著书并非两事,五论繙算学之书,六论畴人传当再续。综计自加、减、乘、除、通分以至微分、积分,由浅入深,术本繁难,而括之以简易之旨;理本艰深,而写之以浅显之词。
又於同治十三年,与英士傅兰雅共译代数术二十五卷,衡芳序之曰:“代数之术,其已知、未知之数,皆代之以字,而乘、除、加、减各有记号,以为区别,可如题之曲折以相赴。迨夫层累已明,阶级已见,乃以所代之数入之,而所求之数出焉。故可以省算学之工,而心亦较逸,以其可不假思索而得也。虽然,代数之术诚简便矣,试问工此术者,遂能不病其繁乎?则又不能也。夫人之用心,日进而不已,苟不至昏眊迷乱,必不肯终辍。故始则因繁而求简,及其既简也,必更进焉,而复遇其繁,虽迭代数十次,其能免哉?自是知代数之意,乃为数学中钩深索隐之用,非为浅近之算法设也。若米盐零杂之事,而概欲以代数施之,未有不为市侩所笑者也。至於代数、天元之异同优劣,读此书者自能知之,无待余言也。”
又与傅兰雅共译微积溯源八卷,序之曰:“吾以为古时之算法,惟有加、减而已。其乘与除乃因加减之不胜其繁,故更立二术以使之简易也。开方之法,又所以济除法之穷者也。盖学算者自有加、减、乘、除、开方五法,而一切简易浅近之数,无不可通矣。惟人之心思智虑日出不穷,往往以能人之所不能者为快,遇有窒碍难通之处,辄思立法以济其穷,故有减其所不可减,而正负之名不得不立矣;除其所不受除,而寄母通分之法又不得不立矣。代数中种种记号之法,皆出於不得已而立者也。惟每立一法,必能使繁者为简,难者为易,迟者为速,而算学之境界,藉此得更进一层。如是屡进不已,而所立之法,於是乎日多矣。微分、积分者,盖又因乘、除、开方之不胜其繁,且有窒碍难通之处,故更立此二术以济其穷,又使简易而速者也。试观圜径求周、真数求对数之事,虽无微分、积分之时,亦未尝不可求,惟须乘、除、开方数十百次,其难有不可言喻者。不如用微积之法,理明而数捷也。然则谓加、减、乘、除、代数之外,更有二术焉,一曰微分,一曰积分可也。其积分犹微分之还原,犹之开方为自乘之还原,除法为乘法之还原,减法为加法之还原也。然加与乘,其原无不可还,而微分之原,有可还有不可还者,是犹算式中有不可还原之方耳,又何怪焉!如必曰加减乘除开方已足供吾之用,何必更求其精?是舍舟车之便利,而必欲负重远行也。其用力多而成功少,盖不待智者而辨矣。又代数术中末卷之中,载求平员周率简捷法式,为犹拉所设。未有此法之时,曾有算学士固灵用平员内容外切之多等边形,费极大工夫,算得三十六位之数。设径为一,周为三一四一五九二六五三五八九七九三二三八四六二六四三三八三二七九五零二八八。其临死之时,嘱其家以此数刻於墓碑,盖平时得意之作,恐其磨灭,故欲传之永久,亦犹亚基默得之墓,刻一球形与员柱形也。”
又与傅氏共译三角数理,此书为英士海麻士所譔。海麻士专精三角、八线之学,著书十有二卷,皆言三角数理,即用为名。首明三角用比例之理;次论两角或多角诸比例数;次论造八线比例表之法;次解平三角诸形;次论诸角比例乘约变化之理;纪彼国算士棣弗美创例也,附以专论对数术及诸三角形设题一百则,为书三卷,以引学者;次总说球上各圈及弧三角形之界;次解正弧斜弧三角形之法;次杂论求弧三角数种特设之表;终以弧三角形设题二十七则焉。然书中说解过於烦费,仍不能变外角和较与垂弧、次形、总较诸旧法,故自海氏书出,益觉徐有壬拾遗三术难能可贵,超越西人。
又与傅氏共译代数难题解法十六卷。
其弟世芳,字若溪。亦通算术,著有近代畴人著述记。